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Abstract

Ultrashort time-domain spectroscopy, particularly field-resolved spectroscopy, are established methods for
identifying the constituents and internal dynamics of samples. However, these techniques are often encumbered
by the Nyquist criterion, leading to prolonged data acquisition and processing times as well as sizable data vol-
umes. To mitigate these issues, we have successfully implemented the first instance of time-domain compressed
sensing, enabling us to pinpoint the primary absorption peaks of atmospheric water vapor in response to tera-
hertz light transients that exceed the Nyquist limit. Our method demonstrates successful identification of water
absorption peaks up to 2.5 THz, even for sampling rates where the Nyquist frequency is as low as 0.75 THz,
with a mean squared error of 12×10−4. Time-domain sparse sampling achieves considerable data compression
while also expediting both the measurement and data processing time, representing a significant stride towards
the realm of real-time spectroscopy.
Keywords: sparse sampling, field-resolved spectroscopy, time-domain spectroscopy, compressed sensing, real-
time detection

Introduction
Detailed description of the constituent and internal dynamics of matter is mirrored in its transient response to an
external field. Resolving and monitoring the encoded information in the electric field of the ultrashort excitation
field or in the time-dependent changes of the optical properties of the sample, provides deep understanding and
insights of matter [1, 2]. The availability of few-cycle pulses has not only advanced various spectroscopic meth-
ods such as pump-probe spectroscopy and Fourier transform spectroscopy, but has also led to the emergence of
innovative techniques such as dual-comb spectroscopy and field-resolved spectroscopy [3–14].

Employing ultrashort pulses offers two distinct advantages for spectroscopic applications (Fig. 1). Firstly, their
broad spectral bandwidth enables simultaneous data acquisition of the sample, eliminating the need for repeated
measurements or laser tuning. With high-bandwidth acquisition, prior knowledge of the sample is not required,
as all available information can be extracted from the measurement during post-processing. Secondly, their ex-
treme temporal confinement allows for temporal gating of the sample’s response from the excitation pulses. This
response, which is enriched with comprehensive spectroscopic information, lasts from tens of femtoseconds to
nanoseconds and is commonly probed by a shorter pulse at various time intervals. When combined with addi-
tional temporal or spatial dimensions, such as multi-dimensional coherent spectroscopy [15], four-dimensional
imaging [16], and hyperspectral imaging [17], ultrashort spectroscopic techniques render quantitative, multivariate
characterization of the sample under scrutiny and facilitate the identification of unknown constituents. However,
real-time measurements are prevented due to the need to record the high bandwidth spectrum at each pixel image
and time delay, which results in a prohibitively long acquisition time to attain sufficient signal-to-noise ratio. The
measurement speed is limited to i) the required number of sample points dictated by the Nyquist-Shannon criteria,
ii) the speed of spatio-temporal scanning, and iii) transportation and storage speed of the measured data. Although
the use of short, high-bandwidth excitation pulses offers significant benefits, such as simultaneous data acquisition,
the response of the sample is often a linear combination of K basis vectors leading to a K-sparse frequency domain.
To minimize data redundancy and obtain the desired spectral content with the minimum amount of data necessary,
it is necessary to apply algorithms to the acquisition process. According to the Nyquist-Shannon sampling theo-
rem, a signal having a frequency f needs to be sampled at a minimum sample rate fsamp of twice the frequency of
the signal ( fsamp ≥ 2 · f ). This criterion sets a minimum requirement for the amount of measured data necessary
for a successful sampling. Compressed Sensing can circumvent this fundamental barrier by exploiting sparsity
and incoherence of the signal, enabling the recovery of the original signal from fewer samples or measurements
while preserving its quality [18–23]. The prior knowledge of a signal’s sparsity enables the formulation of an
optimization problem that allows for the reconstruction of the signal using a reduced number of sampling points
below the Nyquist-Shannon criteria. The sparsity of the measured spectroscopic information of various materi-
als has been discussed by analytical treatment on over-sampled measurements [24–28] or analytical compression
prior to storage or transmission [29, 30]. However, the requirements of incoherence and random sampling have
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Figure 1: Visual summary of time-domain compressed sensing.

made real-time, time-domain sparse sampling challenging. In this work we demonstrate real-time, field-resolved
compressed sensing of water vapour molecules beyond the Nyquist criteria. The reconstruction of the absorption
spectrum of water vapor sets clear boundaries on the required sparsity of a sample for the effectiveness of com-
pressed sensing, as the absorption spectrum includes both high cross-section peaks, and low amplitude adjacent
peaks. Our approach is enabled by randomly sampling, rapidly scanning delay line, enabling sensitive, real-time
sample analysis.

Results

Experimental concept
Fig. 2a shows the experimental setup for terahertz (THz) field-resolved compressed sensing. 2.1mJ, 54fs pulses
of a Ti:Sapphire amplifier operating at 1kHz are used to generate THz transients via optical rectification in a
1mm-thick ZnTe crystal (see Fig. 2b and c). The THz pulses propagated through a box filled and sealed with
water vapour molecules at 50% concentration. To characterize the electric field of the THz pulses, an electro-
optic sampling (EOS) setup incorporating a 0.1 mm-thick ZnTe was developed. 40µW of the amplifier’s output
power is used to probe the THz pulses at the EOS stage, where the polarization changes of the probe pulses due
to interaction with THz electric field strength is detected in an ellipsometer incorporating balanced photo-diodes.
Afterwards, the detected signal is fed into a lock-in amplifier. A mechanical chopper is used to modulate the
repetition frequency of the THz pulses at 500Hz. The modulated signal in combination with a boxcar filter is used
to eliminate systematic drifts of the measurement. Moreover, the box-car filter of the lock-in amplifier ensures the
high bandwidth detection of the signal during the random scanning. For real-time, random scanning of the probe
pulses over the water vapour’s molecular response, an acousto-optical delay line with kHz scanning rates was
integrated into the probe’s beam path [31, 32]. The acousto-optic delay line allows for arbitrary relative time delay
between the THz pulse and probe pulses and shot-to-shot random scanning of the electric field. Data acquisition
is performed by the lock-in amplifier triggered by the radio frequency control signals from the acousto-optic delay
line. Data acquisition trigger (green) and synchronization paths (red) are indicated in Fig. 2a by dashed lines.
The time-delay module has the refresh time of 2ms at an arbitrary temporal position within its scanning range. In
order to capture the complete molecular response encoded in the THz field, which lasts for tens of picoseconds,
a mechanical delay-line was added to the acousto-optic delay line, extending the scanning range of 6400fs for a
single acousto-optical delay line to > 40ps. Alternatively, the scanning range can be extended by coupling multiple
acousto-optic modulators.
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Figure 2: a) Details of the experimental setup. b) Field-resolved measurement of the THz pulses via electro-optic
sampling. c) Spectrum of the THz pulses retrieved from the time-domain measurement. BS: beam splitter, HWP:
half wave plate, NDF: neutral density filter, QWP: quarter wave plate, Si-plate: silicon-plate, ZnTe: Zinc Telluride,
WP: Wollaston prism

Reconstruction strategy
Two categories of compressed sensing algorithms were investigated for the reconstruction of the electric field of
the randomly sampled molecular response of water: convex compressed sensing and greedy algorithm (see Fig.
3). Basis Pursuit Denoising (BPD) and Lasso algorithms [33, 34] from the family of convex compressed sensing
algorithms were used for reconstruction, due to their noise robustness and low reconstruction error for signals with
moderate sparsity [19, 35]. When comparing the mean squared error of the reconstruction for both algorithms, it
was noted that the Lasso algorithm has a unique global minimum at a specific threshold value in the optimization
problem, while the BPD algorithm demonstrates a negligible mean squared error across a range of threshold
parameters (τ and σ in supplementary information). BPD is also recognized for its ability to function as a filter by
eliminating noise from oversampled signals [36]. As finding a reference for arbitrary measurements to optimize
the reconstruction threshold value is not always feasible, BPD was selected for further analysis. From the second
category, the Stagewise Orthogonal Matching Pursuit (StOMP) greedy algorithm was chosen and developed owing
to its fast computation and robustness to noise [19]. To address the issue of significant amplitude reconstruction
error in StOMP, a Nonlinear Least Square (NLS) algorithm has been incorporated into the StOMP reconstruction.
Additionally, StOMP necessitates a distinct reconstruction threshold value at every iteration, which is inefficient
and impractical. Consequently, an approach based on the Interquartile Range method [37] was developed to
calculate the threshold parameter automatically (see supplementary information for more detail).

Real-time field-resolved compressed sensing
As a proof of principle experiment for time domain compressed sensing, we chose to resolve the spectroscopic
information of atmospheric water vapor in response the THz excitation pulses centered at 1 THz. Among the
most abundant molecules in the atmosphere, only water possesses a permanent dipole in this spectral range [38].
As a result, the spectral coverage of THz excitation pulses serves as a filter, isolating the study to only water
vapor and its isotopes [39]. The ambient air’s absorption spectrum in this spectral range is characterized by a high
density of absorption peaks [40], which makes it an ideal platform for assessing the efficacy of compressed sensing
in reconstructing moderately sparse spectra while also highlighting its limitations in reconstructing prominent
absorption peaks and adjunct frequencies. Moreover, such realization holds promise for real-time gas detection in
open-air environments [41, 42]. For a comparison between conventional sampling and Compressed sensing, two
categories of measurements with different number of sampling points were performed on the water vapor response:
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Figure 3: The reconstruction algorithms used for the data analysis of the sparse measurements: The BPD and
StOMP algorithms. While StOMP has the benefit of fast data processing, it requires an input reconstruction
threshold value. To overcome this inefficiency IQR method was used to search for the dominant frequencies while
NLS algorithm is used to optimize the amplitude of the reconstructed traces.

i) linear scans with sampling points at the time intervals of tn+1 = tn +∆t, and ii) randomly distributed sampling
points. Each measurement was repeated for ten times. Hereby, the location of the randomly located sample points
of the second category varies for every measurement. To generate a reference, ten oversampled, linearly scanned
measurements with N = 2034 sample points are averaged. This reference trace is shown by the blue curve in
Fig. 4a. For the spectroscopic analysis, only the sparse molecular response in the decaying tail of the THz light
transient, ranging from 5 to 35ps was considered. The upper limit of this range was determined by the internal
reflection of the THz light transient in the sampling crystal, occurring at 36ps. The sampling points were reduced
from 2023 to 46 data points in eighteen discrete steps and the reconstruction was performed by using both BPD
and StOMP algorithms.

Fig. 4a displays a measurement at an extreme limit, with the minimum random number of sample points at
N = 46, indicated by red dots, along with the reconstructed fields obtained using the BPD algorithm (in orange)
and the StOMP algorithm (in green). The averaged Fourier transformations of ten reconstructions, as well as the
Fourier transformation of a measurement with uniformly distributed N = 46 sampling point are shown in Fig. 4b.
The uniformly sampled waveform with N = 46 has temporal steps of ∆t = 666fs, corresponding to a Nyquist
frequency of 0.75THz. The resulting spectrum clearly displays aliasing and incorporate fake frequencies at below
0.5THz. However, the spectrum obtained from the compressed sensing reconstructed waveform successfully
retrieves water absorption peaks beyond the Nyquist limit, up to 2.2THz. To achieve a similar outcome using
conventional sampling, the number of sampling points would need to be increased by at least three times.

To quantitatively evaluate the performance of compressed sensing, we calculated the mean squared error be-
tween the oversampled reference and the reconstructed waveforms via BPD and StOMP, respectively. Fig. 4c
shows the average and standard deviation of the mean squared error as a function of N for each algorithms, while
the purple curve represents the corresponding Nyquist frequency. We determined the value of the measurement
noise by averaging the mean squared error of the conventionally sampled waveforms with respect to the over-
sampled reference for each N. As this value exhibits only slight variations across different N, it is indicated by a
horizontal dotted line (see supplementary information for more details). Not only does the BPD algorithm outper-
form the StOMP method, but for larger values of N, the waveforms reconstructed using BPD show a mean squared
error that is lower than the measurement noise. This is due to the tendency of BPD to converge to a solution with
maximum sparsity, which acts as a filter rejecting signal amplitudes other than absorption frequencies. For lower
values of N, the mean squared error increases non-linearly, reaching 12×10−4 at N = 46. The low standard devi-
ation between the ten different measurements for each value of N demonstrates the stability of the reconstructions.
Fig. 4d and e summarize the performance of the BPD and StOMP reconstructions for measurements at various
N, where the averaged Fourier transformation of the ten compressed sensing reconstructed waveforms at different
N are presented. The amplitude at each N is normalized to one, and the area bordered by the purple line denotes
the recovered frequencies beyond the Nyquist limit. The spectral region ranging from 1 THz to 1.5 THz is crucial
for this investigation, due to the presence of a large number of absorption lines with high cross-section and the
high spectral density of the THz excitation pulses. Remarkably, the primary absorption peaks in this region are
exceptionally well-recovered beyond the Nyquist limit with excellent quality. When dealing with lower values of
N, the reconstruction of absorption lines with lower amplitude and the adjunct frequencies are more prone to noise,
even for those below the Nyquist limit. A comparison of panel d) and e) reveals that while the less complex StOMP
algorithm has the potential of a fast reconstruction speed compared to BPD, it results in noisier reconstructions of



Figure 4: Real-time field-resolved compressed sensing. a) Field-resolved measurement of atmospheric water
vapor response to THz excitation pulses. The light blue curve shows an oversampled measurement, while the
red dots illustrate the random spars detection at N = 46 sampling points. The reconstructed waveform via BPD
and StOMP algorithm are shown in orange and green respectively. b) Fourier transform counterpart of the sparse
measurements at N = 46 sampling points. The red spectrum illustrate the direct Fourier transformation, while the
orange and green spectra show the averaged Fourier transformation of the reconstructed waveforms via BPD and
StOMP, respectively. c) Mean Squared Error of the reconstructed waveforms via BPD and StOMP at various N. d)
Averaged reconstructed spectra by BPD at various N. e) Averaged reconstructed spectra by StOMP at various N.
The reconstructed spectral components beyond the Nyquist limit are denoted by the bordered purple area.

both the low amplitude frequencies below the Nyquist limit and the absorption lines beyond the Nyquist limit.

Discussion
Ultrashort time-domain spectroscopy and in particular field-resolved spectroscopy have been gold standards for
accurately identifying the constituents and dynamics of matter without the need for labels. Despite numerous
attempts to increase measurement speed in ultrafast spectroscopy [32, 43, 44], real-time measurements remain
challenging due to a prolonged acquisition time, significant data volume, and processing time. For the first time,
this study showcases the use of Compressed Sensing with rapidly sampled field resolved spectroscopy, providing a
solution to overcome these limitations. In particular, when short excitation laser pulses interacting with matter, the
signal carrying information on this interaction are temporally separated from the main pulse turning the character-
ization problem to a compressed sensing problem. Crucial for compressed sensing is the possibility for random
sampling which has been achieved by employing an acousto-optic delay line and a box-car filter for broadband data
acquisition with a high dynamic range. The relatively high density of absorption peaks of ambient air water in ter-
ahertz spectral range provides an ideal platform for assessing the efficacy of compressed sensing in reconstructing
moderately sparse spectra while also highlighting its limitations. We report on resolving the absorption frequencies
three times higher than the Nyquist limit. The reconstruction success rate for the most prominent absorption peak
is 100% showing the potential of successfully reconstructing the absorption for even lower number of sampling
points. However, the success rate decreases below 90% for adjacent frequencies, emphasizing the importance of
sparsity of the signal for full reconstruction (see supplementary information). Additionally, we demonstrate that



compressed sensing below the Nyquist criteria can suppress measurement noise, making it valuable not only for
speeding up measurement time but also for denoising sensitive measurements.

Determining when a sufficient number of sample points have been acquired for measuring an unknown spec-
trum is a major challenge in compressed sensing. However, due to the ability of random sampling, the number of
sampling points increases uniformly across the entire sampling range, allowing for the observation of the conver-
gence of the reconstructed waveform or spectrum. With our compressed sensing algorithm possessing processing
times below 3ms, real time analysis of the convergence is possible. As the refresh time of the acousto-optic delay
line is at 30kHz, individual random shot to shot sampling can be performed for laser pulses below this repetition
rates. For higher repetition rates, partial random scanning can be performed. Here each launched acoustic wave
packet inside the acousto optical delay line delays an incoming pulse train with equal spaced delays [32], while the
relative delay between different scans are randomized showing promise to introduce compressed sensing.

Real-time ultrafast spectroscopy is of crucial importance in various fields. Our innovative technique can greatly
accelerate data acquisition in ultrafast spectroscopy, particularly in higher-dimensional analyses, by data volume
minimization, signal acquisition time reduction, and a contraction in the required number of measurements in each
dimension. These advances alleviate the requirements for specialized measurement instruments, offering a range
of benefits that extend well beyond traditional spectroscopy applications. For instance simplifying the handling of
fragile specimens, enabling real-time environmental monitoring of short-lived pollutants, and real-time, open-air
diagnostics of toxic and hazardous gases.

Methods
The laser delivers 54fs pulses centered at 810nm with 2.1mJ energy at 1kHz repetition rate. In the setup, the diam-
eter of the beam is first reduced from 4.1mm to 2.8mm at 1/e2 via a Gallilean beam expander with the focal length
of f =−100mm and f = 150mm. The beam is then split into two paths via a 90:10 unpolarized beamsplitter. The
reflected beam containing 90% of energy is used for THz-generation and is chopped at a frequency of 500Hz via a
mechanical chopper. Therefore, every second pulse is blocked by the chopper. This modulation frequency in com-
bination with a lock-in amplifier is used to reduce the systematic noise in the measurement. Afterwards, the laser
pulses are sent through a THz-crystal to generate THz-pulses via optical rectification. After the THz generation, a
1.6mm thick Silicon plate is used to filter the 800nm pump-beam, while transmitting the THz-beam. The entire
THz-beam path is placed inside a purge-box, filled with nitrogen to control the humidity level. The THz-pulses
are focused on the detection crystal with a pierced parabola with the focal length of f = 50.3mm, while spatially
overlapped with the probe beam.

The 10% transmitted 800nm beam is used to probe the electric field of the THz-pulses. An acousto optical
delay-line (Dazzler) is implemented in the probe beam path for fast and random delay scanning. In front of the
Dazzler, the polarization of the probe is flipped via a half-waveplate to provide the required input polarization. The
diffracted output beam from the Dazzler has an orthogonal polarization relative to the input beam. Eventually the
probe beam is focused through a pierced parabola to the detection crystal with a plano-convex lens ( f = 130mm).
In the detection crystal, the THz-beam co-propagates with the probe beam with altered polarization depending on
the instantaneous THz field strength via the Pockels-effect. After collimation of the probe beam with an off-axis
parabola ( f = 100mm), its polarization status is analyzed with an ellipsometric detection scheme consisting of a
quarter-waveplate, a Wollaston prism, and a balanced photodetector. The signal of the balanced photodetector is
fed into a lock-in amplifier using a boxcar filter to eliminate systematic drifts. Data acquisition is performed by
the lock-in amplifier triggered by control signals leaving the Dazzler radio frequency module. For more details we
refer the readers to the supplementary information.
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6. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nature Photonics 13, 146–157. ISSN: 1749-4893.
https://doi.org/10.1038/s41566-018-0347-5 (Mar. 2019).

7. Lanin, A. A., Voronin, A. A., Fedotov, A. B. & Zheltikov, A. M. Time-domain spectroscopy in the mid-
infrared. Scientific Reports 4, 6670. ISSN: 2045-2322. https://doi.org/10.1038/srep06670 (Oct.
2014).

8. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters 67,
3523–3525. eprint: https://doi.org/10.1063/1.114909. https://doi.org/10.1063/1.114909
(1995).

9. Timmers, H. et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica 5, 727–
732 (2018).

10. Laubereau, A. & Kaiser, W. Vibrational dynamics of liquids and solids investigated by picosecond light
pulses. Rev. Mod. Phys. 50, 607–665. https://link.aps.org/doi/10.1103/RevModPhys.50.607 (3
July 1978).

11. Movasaghi, Z., Rehman, S. & ur Rehman, D. I. Fourier Transform Infrared (FTIR) Spectroscopy of Bi-
ological Tissues. Applied Spectroscopy Reviews 43, 134–179. eprint: https : / / doi . org / 10 . 1080 /
05704920701829043. https://doi.org/10.1080/05704920701829043 (2008).

12. Pupeza, I. et al. Field-resolved infrared spectroscopy of biological systems. Nature 577, 52–59. ISSN: 1476-
4687. https://doi.org/10.1038/s41586-019-1850-7 (Jan. 2020).

13. Kowligy, A. S. et al. Infrared electric field sampled frequency comb spectroscopy. Science Advances 5,
eaaw8794. eprint: https : / / www . science . org / doi / pdf / 10 . 1126 / sciadv . aaw8794. https :
//www.science.org/doi/abs/10.1126/sciadv.aaw8794 (2019).

14. Herbst, A. et al. Recent advances in petahertz electric field sampling. Journal of Physics B: Atomic, Molec-
ular and Optical Physics 55, 172001. https://dx.doi.org/10.1088/1361- 6455/ac8032 (Aug.
2022).

15. Smallwood, C. L. & Cundiff, S. T. Multidimensional Coherent Spectroscopy of Semiconductors. Laser &
Photonics Reviews 12, 1800171. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
lpor.201800171. https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201800171
(2018).

16. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule
by femtosecond orbital imaging. Nature 539, 263–267. ISSN: 1476-4687. https://doi.org/10.1038/
nature19816 (Nov. 2016).
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1 Experimental setup

1.1 Lock-in detection
To minimize measurement noise, the experiment uses lock-in detection to measure the signal from the balanced
photodetector. Ideally, the balanced photodetector output yields 0V in the absence of the THz-pulse. However,
drifts can occur due to alignment imperfections or changes caused by thermal effects or by scanning the delay
with the Dazzler or mechanical delay stage. To remove these drifts, the THz-pulses are chopped at half the laser
repetition rate. Consequently, the balanced photodetector measures periodically one probe pulse with the THz-field
and one without it. Since drifts are present in both pulses, it results in a 1kHz signal. However, the information
about the THz-field strength is present in only one probe pulse yielding a signal at 500Hz. By demodulating the
signal of the balanced photodetector with a reference signal at 500Hz in a lock-in amplifier, the resulting signal is
free from systematic noise and possesses only information about the THz-field.

1.2 Synchronization
Various trigger signals are present in the experimental setup to synchronize the different devices and to ensure
accurate data acquisition. Fig. 1 provides a layout of the different trigger signals. The front-end generates a trigger
signal at a frequency of 1kHz (red) corresponding to the outgoing optical pulse train. This signal triggers both
the chopper and the Dazzler. To block every other optical pulse, the chopper uses the first subharmonic of this
trigger signal with a frequency of 500Hz. This chopping frequency is further used as the demodulation frequency
of the lock-in amplifier (green). The Dazzler utilizes the trigger of the Legend to trigger an RF-pulse that drives
an acoustic wave in the crystal-unit. A control signal is then sent to the electronic control-board via the ”GATE”-
output S1 of the Dazzler (blue, at 1kHz) for every launched RF-pulse, even if the Dazzler is running but not
controlled by the computer.

When a measurement is started by the computer, the information about the acoustic pulses launched within the
experiment is send via a USB connection to the Dazzler. The ”PATTERN-GATE” output of the Dazzler becomes
high before the first acoustic wave of the sequence is launched, indicating that the Dazzler is running a user-defined
sequence controlled by the computer. This output signal remains high until the sequence is over. To ensure that
the lock-in signal is sampled only when the user-defined sequence is played and when a pulse passes through the
chopper, an electronic control board is used. The board consists of an AND gate and a D-flip-flop. The AND gate
combines the ”GATE” and ”PATTERN-GATE” outputs of the Dazzler resulting in a 1kHz trigger signal whenever
a user-defined sequence is played from the computer. If no user-defined sequence is playing, the AND gate outputs
a low signal. In the presence of a sequence, the frequency of the 1kHz trigger signal after the AND gate is divided
by two using a D-flip-flop to sample only the lock-in amplifier signal of pulses which are passing through the
chopper. The signal leaving the electronic board is triggering the data acquisition of the lock-in amplifier.

Due to the lack of synchronization between the chopper and the Dazzler in the setup described above, the
Dazzler is unable to determine if a pulse is blocked or transmitted by the chopper during the start of a sequence.
As a result, in every second measurement in average, the electronic control board produces an incorrect trigger
signal sampling the lock-in amplifier when a pulse is blocked by the chopper. In this case, the measurement must
be discarded.

1.3 Rapid field measurements
To minimize measurement time, the Dazzler rapidly scans in a shot-to-shot manner, producing the same time delay
for a pair of two consecutive probe pulses. Following one pair of probe pulses, a next pair of probe pulses expe-
riences a new delay. As the beam generating the THz-pulse is chopped at half the repetition frequency, each pair
of probe pulses coincides with one generated THz-pulse and one blocked pulse. Therefore, for every time-delay
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Figure 1: Path of trigger signals required for synchronization and data acquisition

within a scan, one probe pulse probes the THz-pulse while the other one serves as a reference. By measuring the
probe pulses via a lock-in amplifier, systematic noise present in both probe pulses of a pair is eliminated, leaving
only the THz-signal.

For large step sizes or random scanning, the measured signal amplitude can jump from zero to the peak value of
the THz-pulse. Hence, the probe pulses have to resolve this and it must be captured with the detection electronics.
The UHFLI lock-in amplifier from Zurich Instruments can follow such a jump when using the boxcar averager
functionality while reducing noise due to the signals low duty-cycle. Here, the temporal moving average (boxcar)
ensures a pure signal of the last data point without any residual contribution by prior data due to the exponential
filter function used in traditional lock-in amplifiers.

2 Reconstruction strategy

2.1 Mathematical Description of Compressed Sensing
Compressed Sensing is a technique where an analog signal s(t) is sampled with a low number of M sampling points
resulting in the measured M × 1 discrete signal y[t]. As it is not feasible to mathematically describe sampling an
analog signal s(t), an oversampled N × 1 digital signal s[t] with N >> M sampling points represents the original
signal. Sampling this signal can then be described with the M×N sensing matrix Φ

y[t] = Φs[t]. (1)

As an example, the sensing matrix Φ can be the spike basis possessing the columns φi[t] = δ [t− i] in the sensing
matrix [1].

Compressed Sensing requires the signal s[t] to be sparse in some orthonormal basis. The original signal s[t]
can be expressed in this basis with a N ×N basis matrix Ψ and a N ×1 amplitude vector c⃗

s[t] = Ψ⃗c. (2)

One example for an orthonormal basis is the Fourier-basis with the discrete-Fourier-transform (DFT) matrix as
the basis matrix Ψ.

The original signal can be regained by solving the equation

y[t] = ΦΨ⃗c (3)

for the vector c⃗. Since this system is undetermined, the unique solution can be found by solving for the minimum
l0 norm of c⃗. However, to obtain the minimum l0 norm, all possible solutions need to be tried out making the
problem not feasible to compute.



Hence, in Compressed Sensing one usually solves the optimization problem [1, 2]

min ||⃗c||1 subject to y[t] = ΦΨ⃗c, (4)

where ||⃗c||1 = ∑i |ci| is the l1 norm. The solution of equation 3 has the minimum l1 norm of c⃗.
The necessary condition to regain s[t] from the measured signal y[t] is that the reconstruction matrix Θ = ΦΨ

needs to obey the restricted isometry property (RIP). As this condition is hard to check, the incoherence between
the matrices Φ and Ψ can be used as an indication for a stable and faithful reconstruction. The coherence between
the two matrices is defined as [1, 2]

µ(Φ,Ψ) =
√

N max
i≤M, j≤N

|⟨φi,ψ j⟩|, (5)

measuring the largest correlation between any of the elements in the two matrices.
The coherence values that can yield values in the range from 1 to

√
N, with 1 being the value of maximum

incoherence. A higher degree of incoherence, which translates to lower coherence values, increases the likelihood
of accurately reconstructing the signal s[t]. In certain instances, the incoherence value is calculable. For instance,
the spike basis possesses a maximum incoherence of µ = 1 with the Fourier-basis, while the noiselet basis has a
coherence value of µ =

√
2 with the wavelet basis. For a fixed basis with matrix Ψ of unknown coherence to any

sensing matrix Φ, the sensing matrix can be chosen to be a random, orthonormal matrix. This results in a high
probability of having a low coherence value with the fixed matrix Ψ [1, 2].

2.2 Convex Compressed Sensing Reconstruction
Equation 4 can be understood as a convex optimization problem which can be solved by linear programming algo-
rithms. Since the problem as stated in equation 4 is not considering noise, the so called basis pursuit algorithm can
only reconstruct a stable, faithful solution for noise-free measurements. For noisy measurements, it is not optimal
to solve equation 3 exactly. Therefore, a relaxed problem needs to be formulated [2]. Two convex approaches
capable of dealing with noisy measurements are investigated for compressed sensing. The first algorithm is called
basis pursuit denoising optimizing the problem [3]

min ||⃗c||1 subject to
1
2
||ΦΨ⃗c− y[t]||22 ≤ σ , (6)

where σ is a parameter chosen according to the magnitude of noise in the measurement. The second algorithm
is solving the so called Lasso problem given as [3]

min
1
2
||ΦΨ⃗c− y[t]||22 subject to ||⃗c||1 ≤ τ, (7)

where the parameter τ is the regularization parameter of the problem.
Open source Lasso and basis-pursuit denoise algorithms are investigated [3, 4]. For the Lasso as well as the

basis-pursuit problem, the value of τ , respectively σ needs to be determined empirically. For that, one randomly
sampled trace with N = 88 sampling points of the UHLFI measurement set is used for the determination of τ
and σ . This explicit measurement is taken, since the number of sampling points correspond to the measurement
with the linear sampling scheme with ∆t = 341fs. This step size yields a Nyquist-frequency of fNyquist ≈ 1.5THz
positioned in the middle of the absorption spectrum of water vapor. Therefore, this measurement correlates to the
border in which compressed sensing could outperform the Fourier-transformation of a traditional linear sampling
scheme.

The data is fed to the Lasso as well as the basis-pursuit denoise algorithm for different values of τ and σ ,
respectively [5]. For the respective reconstructed traces, the mean squared error to a oversampled reference trace
is calculated. The results are depicted in Fig. 2. Both algorithms exhibit a similar minimal value of the mean
squared error. However, the Lasso algorithm possesses a distinct global minimum at τ ≈ 70, whereas the basis-
pursuit denoise algorithm shows a constant minimum value for σ < 10−1. Since it is not always possible to
find a reference for arbitrary measurements to optimize the value of τ , the basis pursuit algorithm fits better as a
compressed sensing algorithm for accelerating time domain spectroscopy. Consequently, solely the basis pursuit
algorithm with a fixed value of σ = 10−6 is investigated.

2.3 StOMP
A reconstruction program consisting of the three algorithms StOMP, TRF and iFFT was developed for evaluating
the measured data [The code will be publicly available upon acceptance for publication]. The code aims for
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Figure 2: Mean squared error of reconstructed traces from a randomly sampled measurement with N = 88 sam-
pling points with respect to an oversampled reference trace. The figure compares the mean squared error for the
reconstruction performed by the Lasso (a) and the basis-pursuit denoise (b) algorithm for different values of τ ,
respectively σ .

fast data processing, minimum human intervention and control characteristics of result. Stagewise Orthogonal
Matching Pursuit is a greedy algorithm developed in 2012 which is popular due to the low level of computational
complexity resulting in fast data processing [6].

The developed implementation of the iterative algorithm StOMP is shown in Algorithm 1. In each iteration s,
the different entries of the sparse domain c⃗ for a residual signal rs are weighted via the matched filter κs = ΘTrs
(In case of the first iteration: r0 = y). The result κs scales the presence of the different entries of c⃗ in the signal
rs. The most prominent entries are selected via a threshold τs yielding a set of outliers Js = { j : |κs( j)|> τs}. The
threshold τs = ts ·σs is constructed by a threshold parameter ts and the formal noise level of the residual rs given
by

σs =
||rs||2√

dimension(rs)
. (8)

The entries in this set are merged with all the previous found outliers given in the set Is−1 updating the total set
of detected outliers Is = Is−1 ∪ Js. The projection of the measured data on the detected outliers Is yields the result
for this iteration

c⃗s =
(
ΘT

IsΘIs
)−1 ΘT

Isy. (9)

Here, ΘIs indicates the M × |Is| matrix which is constructed of Θ by choosing only the columns according
to the index set Is. With that, the result c⃗s possesses nonzero values for the dominant entries in Is weighted by
the projection of the measured signal y. If a certain exit condition is fulfilled, cs yields the final result of the
algorithm. If the exit condition is not yet fulfilled, the residual for the next iteration is updated by rs+1 = y−Θc⃗s.
Consequently, the residual of the next iteration rs+1 contains the remaining signal contributions which have not
been yet detected.

The value of the threshold parameter ts to achieve an optimal reconstruction depends on the input signal y and is
varying significantly between different measurements. Hence, we developed an automatic thresholding approach
based on the Inter-Quartile Range (IQR) method for outlier detection [7]. The IQR indicates the midspread of a
dataset and is defined as the difference of the third and first quartile IQR = Q3−Q1. The first and third quartile are
hereby defined as the mean of the lower and upper half of a statistical distribution, respectively. In the developed
algorithm, ts is calculated by the formula

ts =
Q3 + γ · IQR

σs
, (10)

where γ is a set filter value dictating the sensitivity to reconstruct less dominant entries of c⃗ in the measured
signal.

The discussed reconstructions in this work were computed with a filter value of γ = 1.8. The developed
algorithm applies the threshold only to entries c⃗s within in a set of given boundary conditions. In the case of the



presented measurements, only entries corresponding to frequencies within the spectrum of the excitation pulse
f ≤ 2.5THz are considered. To improve the robustness of the algorithm, a range of sparsity for the reconstructed
signal is defined. In case the set of detected outliers Is contains a number of entries below the minimum allowed
sparsity, the algorithm fills this set by the most prominent entries of c⃗s according to the matched filter until the set
possesses the minimum allowed sparsity. In case the set Is is above the maximum allowed sparsity, the algorithm
stops and returns the solution of the current iteration cs.

As StOMP is indifferent towards amplitude optimization, a Nonlinear Least Squares (NLS) solver was included
in the reconstruction algorithm. The “Nonlinear Least Squares” solver is a wrapper for scipy.optimize.curve fit
which is a wrapper for scipy.optimize.least squares, the used algorithm is “Trust Region Reflective”. It has been
chosen because it is well suited for large sparse optimization problems. We choose to use scipy.optimize.curve fit
instead of scipy.optimize.least squares because its user-friendliness compared to other optimization methods in
python. Due to the fact that NLS only optimizes the result of StOMP and does not “’add’ any frequency to the
optimized result, only a few iterations are needed. NLS tries to minimize the error between the reconstruction
and the measurement in time domain. Therefore, it is capable of changing/readjusting all nonzero values of the
reconstruction in frequency domain.

Algorithm 1 Our Implementation of StOMP (”IQR”-Mode)

Require: compressed measurement: y, reconstruction matrix: Θ, maximum stages: maxstages, filter value: γ ,
boundary condition: b, minimum sparsity ratio: minsparsity, maximum sparsity ratio: maxsparsity
for s = 1,s ≤ maxstages : i+= 1 do

κs = ΘT rs ▷ Matched Filter
if s == 1 or Js−1 == {} then

ts =
TRESHOLD(κs ,b ,γ)

σs
for κs ∈ {b}

else
ts = ts−1

end if
Js = { j : |κs( j)|> tsσs} ▷ Hard Thresholding
if SPARSITY RATIO(κs, Is−1, Js) < minsparsity then

while SPARSITY RATIO(κs, Is−1, Js) < minsparsity do ▷ If sparsity to low increase it until it is ok
Js ∪{ j : |κs( j)| ≥ |κs(n)|∀n}

end while
end if
Is = Is−1 ∪ Js ▷ Updating Index Set
(cs)Is = (ΘT

IsΘIs)
−1ΘT

Is y ▷ Projection
rs+1 = y−ΘIs cs ▷ Updating residual
if SPARSITY RATIO(κs, Is−1, Js) ≥ maxsparsity then ▷ If sparsity ok or to hight stop

end for
end if

end for
return cs

Algorithm 2 sparsity ratio

function SPARSITY RATIO(κs, Is−1, Js)
return |Is−1|+|Js|

dim(κs)

end function

3 Reconstruction details

3.1 Basis and measurement matrix
Compressed sensing algorithms require a measurement matrix Φ as well as a basis matrix Ψ. In this work, the
discrete-Fourier-transformation (DFT) is used as the basis matrix Ψ. Hence, the entries c⃗ correspond to the fre-
quency spectrum of the measured signal.

The size of the basis and the corresponding matrix Ψ is determined by the length of the time vector for the
reconstructed signal. The time vector and the correlating measurement matrix can be chosen arbitrarily. In the



Algorithm 3 Threshold tIQR Calculation

function THRESHOLD(κs, b, γ)
C = {| κs( j) |: j ∈ b} ▷ absolut values with respect to index boundaries
Q1 = P C

25 ▷ Percentil 0 to 25%
Q3 = P C

75 ▷ Percentil 75 to 100%
IQR = Q3 −Q1 ▷ Interquartil range calculation
tIQR = Q3 + γ · IQR ▷ threshold calculation
return tIQR

end function

present work, the minimum and maximum of the time vector is bound to the temporal window of the molecular
response. This allows to compare the Fourier-transformation of the reconstruction to the one of the linear sampled
data laying within this window with equal spectral resolution. The step size of the time vector for the recon-
struction is upper bounded by the Nyquist criteria of the signal. By decreasing the step size, the quality of the
reconstruction improves since differences between time points of the reconstruction and the random time points of
the measurement are decreasing. However, decreasing the step size is increasing the size of the matrices and hence
the computation time. In this work, we use a moderate step size of ∆t = 75fs.

In the case of the basis pursuit denoise algorithm, a boundary matrix Σ able to set boundary conditions is added
to the basis matrix ΨBPD = ΨΣ. Σ allows to define a frequency range for non-zero values while keeping the DFT
matrix large. We selected a frequency range from 0 up to 2.5THz corresponding to the spectrum of the excitation
pulse. A large DFT matrix is favorable in BPD, since this corresponds to a fine time step of the reconstructed
time signal. For finer time steps, the error calculation ||ΦΨ⃗c− y[t]|| is more accurate, as the time points of the
reconstructions are closer to the random time points of the measured signal. The boundary matrix transports the
vector c⃗ with entries laying in the defined spectral region into the columns of a large fft matrix corresponding to
the respective frequencies of c⃗.

3.2 BPD reconstruction of measurements with different lock-in amplifier
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Figure 3: Mean and indicated standard deviation of the mean squared error of reconstructed traces for three dif-
ferent sets of measurements. The mean squared error is calculated with respect to an average of ten oversampled
reference traces of the respective measurement set. In the figure, the reference shows the mean squared error of
the linear sampled data with respective number of sampling points to the same reference trace.

The quality of reconstructed traces via BPD for two sets of measurements performed with two different lock-
in amplifiers (UHLFI and MFLI from Zurich Instruments) are compared. The lock-in amplifier UHFLI is using
the boxcar averager option to reduce noise due to the low duty cycle of the signal of the balanced photo diodes.
The lock-in amplifier MFLI acquires data without a boxcar averager option. To speed up settling of the MFLI’s
low-pass filter to avoid unwanted contribution due to the exponential filter, the time constant is lowered. To atten-
uate signal contributions of DC offsets, non-linearities and signal components situated at twice the demodulation



frequency, a sinc-filter is applied. The combination of the low time constant with the sinc-filter results in higher
measurement noise compared to the detection with the boxcar filter. Consequently, we are able to compare the
quality of reconstruction of measurements with two different noise levels. For a quantitative comparison, the mean
squared error of the reconstructed traces for the random sampled measurements is calculated with respect to the
average of the ten linear sampled traces with the lowest step size for the respective set of measurements. The
mean as well as the standard deviation for the mean squared error of the ten repetitions for different number of
sampling points are shown in Fig. 3. As a measure for the measurement noise, the mean squared error of the
linear sampled measurements is depicted for the different number of sampling points. The MFLI measurement
exhibits measurement noise which is by a factor of three higher compared to the UHFLI measurement. For mea-
surements possessing a large number of sampling points, the BPD reconstruction is below the noise level for both
set of measurements. However, the reconstructions of the MFLI measurement show a bigger noise rejection with
respect to the noise level compared to the UHFLI measurement. This shows the potential of compressed sensing
in improving the signal quality of noisy measurements.

3.3 BPD reconstruction quality
The reconstruction quality of linearly sampled and randomly sampled measurement are compared in Fig. 4 and 5.
The probability to reconstruct absorption peaks via BPD for a randomly sampled waveform with N = 46 is shown
in Fig 6.
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Figure 4: a) Power density spectrum (PDS) of the reconstruction of ten linear sampled measurements with N = 47
(gray) and the PDS of an oversampled reference trace (black). b) Mean squared error of the BPD reconstruction of
linear (purple) and scrambled (blue) measurements with respect to an oversampled reference for different number
of sampling points. The measurement noise (grey) is given by the mean squared error of the raw linear sampled
measurements with respect to the oversampled reference. The Nyquist frequency for the corresponding number of
sampling points is given in orange.
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Figure 5: Averaged Power density spectra (PDS) for the BPD reconstruction of ten linear sampled measurements
for different number of sampling points.
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Figure 6: Probability to reconstruct absorption peaks via BPD for a randomly sampled waveform with N = 46
sampling points. An absorption peak is declared as detected if the reconstruction possesses a value greater than the
given threshold (orange) in the area of the respective absorption. The threshold is given as the noise level of the
reference (black) threshold = 0.005 in a) and as a quarter of the respective absorption peak value of the reference
in b).

References
1. Candes, E. J. & Wakin, M. B. An Introduction To Compressive Sampling. IEEE Signal Processing Magazine

25, 21–30 (2008).

2. Rani, M., Dhok, S. B. & Deshmukh, R. B. A Systematic Review of Compressive Sensing: Concepts, Imple-
mentations and Applications. IEEE Access 6, 4875–4894 (2018).

3. Van den Berg, E. & Friedlander, M. P. Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on
Scientific Computing 31, 890–912. http://link.aip.org/link/?SCE/31/890 (2008).

4. Van den Berg, E. & Friedlander, M. P. SPGL1: A solver for large-scale sparse reconstruction https://friedlander.io/spgl1.
Dec. 2019.

5. Scheffter, K. Accelerating Terahertz Field-Resolved Spectroscopy MA thesis (Friedrich-Alexander-University
Erlangen-Nürnberg, Max-Planck-Institute for the Science of Light, Germany, 2022).



6. Donoho, D. L., Tsaig, Y., Drori, I. & Starck, J.-L. Sparse Solution of Underdetermined Systems of Linear
Equations by Stagewise Orthogonal Matching Pursuit. IEEE Transactions on Information Theory 58, 1094–
1121 (2012).

7. Vinutha, H. P., Poornima, B. & Sagar, B. M. Detection of Outliers Using Interquartile Range Technique from
Intrusion Dataset in Information and Decision Sciences (eds Satapathy, S. C., Tavares, J. M. R., Bhateja, V. &
Mohanty, J. R.) (Springer Singapore, Singapore, 2018), 511–518. ISBN: 978-981-10-7563-6.


